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The influence of inhomogeneity of particle density on the equation of state 
has been considered in the approximation of homogeneous fluctuations. 
The formula for the relative mean square fluctuation has been derived taking 
into account intermolecular interaction. It has been shown that  the density 
fluctuations cannot  be neglected near the coexistence curve. This curve has 
been obtained without  recourse to the Maxwell construction; unphysical 
parts of the van der Waals isotherms in fact never appear in the theory. 
Experimental parameters have not  been used. 
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1. I N T R O D U C T I O N  

T h e  e q u a t i o n  o f  s t a t e  f o r  a f lu id  s y s t e m  c o n t a i n i n g  N a t o m s  ( m o l e c u l e s )  in  

v o l u m e  V c a n  b e  w r i t t e n  in  t h e  g e n e r a l  f o r m  (1~ 

P = k r p  + ( W / 3 V )  (1) 

w h e r e  W i s  t h e  i n t e r n a l  v i r i a l  a n d  p d e n o t e s  t h e  d e n s i t y  o f  pa r t i c l e s .  T h e  f o r m  

(1) c a n  be  r e g a r d e d  as  t h e  e x a c t  e q u a t i o n  o f  s t a t e  i f  t h e  i n t e r n a l  v i r i a l  is 

c a l c u l a t e d  exac t ly .  T h e  p r o o f  o f  t h e  l a s t  s t a t e m e n t  h a s  b e e n  c a r r i e d  o u t  in  t h e  
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case of the thermodynamic limit. (2~ Since the exact partition function is 
not available in the theory, there is an enormously rich literature devoted to 
several approximations of Eq. (1). If  the whole system is treated as a homo- 
geneous one as far as the density is concerned, Eq. (1) always gives isotherms 
of the van der Waals type for temperatures below the critical one, indepen- 
dently of the accuracy to which the internal virial is calculated. Thus the 
Maxwell construction must be introduced ad hoc to correct an unphysical 
isotherm. Apart from the unphysical parts of the van der Waals isotherms, 
these isotherms lie above the experimental results and are too steep in the 
critical region. The best-known approximations of Eq. (1) connected with the 
so-called virial expansion, for which Mayer e t  al.  ~a~ give the theoretical analysis, 
lead to rigorous results for states not too close to the critical region and do 
not remove all difficulties connected with the theory of condensation. One 
can become disillusioned with the series expansions since no general point 
of view emerges from them. 

Our aim is to show in this paper the possibility of other approximations 
of Eq. (1). We shall reconsider the original idea conceived by Smoluchowski ~4~ 
that the density fluctuations should be taken into account in the derivation 
of the equation of state and are responsible for the phase transition. The 
density fluctuations are usually believed to be negligible from the macro- 
scopic point of view. On the other hand, it is well known that the density 
fluctuations in a fluid system become abnormally large in the vicinity of the 
critical point and are responsible for the spectacular phenomenon of critical 
opalescence. We shall show in the next sections that taking into consideration 
the density fluctuations leads to the corrected equation of state and gives a 
phase transition analytically. 

2. EQUATION OF STATE FOR I N H O M O G E N E O U S  SYSTEM 

Let us assume that as a result of interactions and the chaotic movement 
of atoms density fluctuations in a fluid system are created. We replace the 
actual inhomogeneous state of the system by an idealized model of inhomo- 
geneity which consists in the division of the system into Na equal cells in 
which the number of particles differs from the mean number by plus or minus 
the root mean square fluctuation in the number of molecules. The starting 
point of our physical model consists in the observation that a fluid system 
near the critical state should show a "grainlike structure" since the deviation 
from the equilibrium value of density grows rapidly when the critical state is 
approached. Such a region, following Smoluchowski, (5~ is treated as a sub- 
system in a reservoir. The subsystem is very small from a macroscopic point of 
view but sufficiently large to allow the application of statistical mechanics to 
describe the properties of the subsystem. From the phenomenon of critical 
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opalescence one can deduce that in the volume of one cell of  magnitude A a 
(where A is the wavelength of light) there are on the average 106-107 molecules. 
So we have the number of  cells of the order 10as-101~ in one mole of  g.as in 
the critical state. Such a "ce l l "  model was introduced by Smoluchowski (5~ 
and a similar model is described in Chapter 7 of  Ref. 6. The subsystem remains 
in the nonequilibrium state with the reservoir but we can assume a local 
equilibrium.~7~ In other words, it is generally postulated that all thermodynamic 
functions of  state exist for each element (subsystem) of the system. These 
thermodynamic quantities are the same functions of the local state variables 
as the corresponding equilibrium thermodynamic quantities. (a~ Thus the 
total internal virial for an inhomogeneous system can be expressed by a sum 
over virials of  subsystems as follows: 

N1 

W =  ~ W~+ W~ (2) 
i=J .  

where Wz is related to the energy of interaction between subsystems. In the 
approximation of homogeneous fluctuations the internal virial of the ith 
subsystem can be expressed in the following form: 

= -�89 (3) 

where p~ and n~ denote density and number of particles in the fluctuation, 
respectively. The symbol c5 represents the intermolecular interaction 

fo ~ ~u ( r )  . 
= r ~ g(r) d3r (4) 

where U(r) is the interaction potential and g(r) denotes the equilibrium radial 
distribution function. 

In the first approximation we introduced the mean value of ~o equal to 

the equilibrium value of this quantity, assuming in this way that the depend- 
ence of the function g(r) on density can be neglected in our considerations. 
One can say that we express the local virial in approximation to the first t w o  

terms in the virial expansion. Incidentally, this is the same level of approxima- 
tion as the one given by the van der Waals equation. (9~ The last assumption 
certainly changes the accuracy of the final results but neither the generality 
of  our considerations nor the physical model. 

A more detailed discussion of this problem is given in Section 5. 
The relative fluctuation of density in the ith subsystem can be described 

by 

~ = (p~ - po)lpo (5) 
Using Eqs. (3) and (5), formula (2) can be rewritten in the form 

Ni  

w = -�89 ~ (1 + ~)~ + v/, (63 
i = 1  
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where no is the equilibrium number of atoms in the volume of the subsystem. 
Since the total number of atoms N is constant, we can write 

N1 

~ = 0 (7) 
~=1 

Using Eq. (7) and replacing 3~ 2 by (32) in Eq. (6), the total internal virial for 
an inhomogeneous gas system can be expressed in the following form: 

W = -�89 + (32)) + Wx (8) 

Substituting (8) into (1), we obtain the following formula for the pressure in 
the total system: 

P = kTpo - ~po~(1 + <82)) - akTpo (9) 

where we replaced the term WI/3 V by - akTpo. The undetermined parameter 
a satisfies the condition a << 1, since it can be assumed that the energy of 
interaction between subsystems is small. Thus, the correction given by the 
density fluctuations to the pressure of the system is Wo(~2)/3 V - akTpo. 

All subscripts " z e r o "  used in this paper denote the equilibrium values. 

3. MEAN SQUARE FLUCTUATION IN THE PARTICLE DENSITY 

To calculate the mean square density fluctuation, we shall apply the 
method developed by Smoluchowski (5~ for calculating the probability of 
occurrence of a fluctuation. 

The general formula for the probability can be written as follows: 

p(~) d3 = C exp[-L(3) /kT]  d3 (10) 

where L(3) denotes the work necessary to create the subsystem reversibly 
from the state of equilibrium with the reservoir to the state described by the 
parameter 3. The work L done by the reservoir on the subsystem can be 
expressed by the net change of the proper thermodynamic potential of the 
whole system. Before we evaluate the formula (10) further we remark that 
the density fluctuations must obviously be independent of whether we consider 
fluctuations in the number of particles at constant volume or in volume at 
constant number of particles. In other words, it is inessential whether one 
chooses n or v as the independent variable. Thus, we can write 

[ 

g 0 ~ -  P o _  n ~ -  nol = - v ~ -  Vo (11) 
PO / /0  I v = const  Vi t 
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and since the pressure is a function of p and T only, the following formula 
must be satisfied: 

In the case of temperature and volume as the independent variables, the work 
L can be expressed by the change of the Helmholtz free energy. Since the 
volume of  the reservoir is much larger than the volume of  the subsystem, we 
can assume that the pressure in the reservoir remains constant and equal to 
the equilibriiam value P0 during the whole process when the fluctuation is 
being created. Thus, the work L can be expressed as" follows: 

L ( 3 )  = - ( P  - Po)  ,iv (13) 
o 

with the temperature of the subsystem kept constant since the-fluctuations in 
the temperature and density can be regarded as statistically independent. <7> 
In a first approximation the formula (13) can be replaced by (lo> 

L(3) = - �89 AP Av (14) 

where the values AP and Av are related to the subsystem. There are a few ways 
of evaluating the formula (14) further, each of which leads in principle to 
the same result. One can, for instance, express the local pressure by the general 
formula (1) using the local variables. Then,  the local, isothermal change of  
pressure due to the density fluctuation with the parameter 3 will be 

~i  ~ = (kV - ~po~)Po 3 - ~po~ 3 ~ (15) 

Instead of  2xv we can write 

Av = (OP/~v) -1 Ap  (16) 

Using Eqs. (13)-(16) and retaining terms with 8 2 only, we obtain 

(8 2) = k T / n o ( k T -  �89 (17) 

In the last equation the quantity no remains a parameter of  the theory. 
Although Eq. (17) formally holds for all values of no, only one value of no has 
a physical meaning. One can express this value by no = N/N1, where the 
number N1 has the physical meaning of the most probable number of 
fluctuations and at least in principle can be determined both theoretically 
and experimentally. 

In the approximation of a homogeneous fluctuation some parameter 
characterizing the fluctuation (volume, number Of particles, or number of  
fluctuations) must occur, but this parameter can be determined, e.g., from 
the condition (~1> 

~p(~) /~r  = o 
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which gives the most probable value for ~, where ~: denotes one of the param- 
eters mentioned above and characterizes the fluctuation. 

4. D ISCUSSION 

It is evident from the formula (17) that the density fluctuations are 
really negligible for ideal or very dilute gas since (8 2) is of the order O(no-112), 
i.e., (~2) = 1~no, when the internal virial is much smaller than the kinetic 
energy. The qualitative dependence of the internal virial on the density can 
be deduced from the form of the interaction potential and the radial distribu- 
tion function. The value of p0N is near zero when the density is small, but as 
one compresses the gas this value increases and reaches a maximum for some 
particular value of density. On further compressing the gas, the value p0~ 
decreases and for very high density can even be negative because of the 
dominance of the repulsive interaction. If  the temperature of the system is not 
too high, the internal virial can be of the same order as the kinetic energy of a 
compressed gas or an extended liquid. 

Considering Eq. (15), one can find 

~o = 6(kT-  �89 ~ (18) 

since the value of 8 for which the local change of pressure AP due to the 
density fluctuation is equal to zero. This change would be negative for 

> 8c, which would mean negative compressibility. Even in a dilute gas 
system there is a finite probability that the fluctuation with high density 
corresponding to a liquid phase can be created in a small element of volume 
for a short period of time, since the probability distribution function (10) 
is determined for all values of ~ even away from the critical region. Such 
states of high abnormality are well described in the literature. ~12,~3) The whole 
fluid system becomes unstable mechanically when the mean square fluctuation 
is equal to the square of the critical fluctuation defined by Eq. (18). Thus, we 
propose the criterion of stability in the general form 

(,3 2) = 8c 2 (19) 

The stability criterion (19) describes the behavior of a subsystem and is 
connected with negative compressibility. It is worthwhile to mention that 
although the stability criterion for a representative subsystem decides about 
the stability of  the whole system (unit volume of it), the overall static iso- 
thermal compressibility for the whole system need not be negative. Clearly, 
the local and overall compressibilities are different. (~4~ This results from the 
definition of the isothermal compressibility. The local isothermal compress- 
ibility can be found from Eq. (1) applied for an homogeneous subsystem, while 
the overall compressibility should be calculated from Eq. (9). 
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Now we shall turn to the problem of the limits of the integral in calcula- 
ting the mean square fluctuation. Equation (17) was obtained from the formula 

<s% = a%0) d8 da (20) 
oo 

The limits + oo in Eq. (20) can be assumed only for a very sharp, rapidly 
convergent probability distribution function. Thus formula (17) for the mean 
square fluctuation is applicable only for states away from the critical region. 
When the critical region is approached the probability distribution function 
becomes more and more flat because of the decrease of the probability index. 
The possible values of 8 are physically limited and we should introduce these 
limits into equation (22). Since the parameter 8 cannot be smaller than - 1 
[this results from the definition (5) of 8], the upper limit must be + 1, since 
for any even probability distribution function the limits of the integral in the 
equation 

f 0rriax 
(85 = C 8p(8) d8 ==- 0 (21) 

d6min 

must be the same. Otherwise (85 would not be equal to zero. Such a result 
would be justified only in the case of creation or annihilation of particles. 
Thus, the mean square fluctuation can be expressed by the formula 

<825 = 8=exp(-2 n~176176 d8 (22) 

w h e r e ~ = k T -  1 - ~-po~. From Eq. (22) we obtain 

<8s5 = k_.T_T [1 - 2_ exp(-noa/2kT) ] 
nooc (2wkT/noa)ll2d?([noa/2kT]l/OJ 

where 4(z) denotes the probability integral. The last equation can be re- 
written as follows: 

(825 = k___T [1 - ex.__pp(~noa/2kT) ] 
no cz 1F1(�89 }; -.oa/2kr)J 

where 1F~(/3; y; z) denotes the confluent hypergeometric function. Because of 
the identity ~Fz(/3; y; z) = e ~ 1Fl(y - /3; y; - z ) ,  we can express the mean 
square fluctuation in the form 

@25 = (kT/nooO{1 _ [1F,(1 ; 2a_; noa/2kT) ]- z} (23) 

Substituting (18) and (23) into (19), we obtain the following equation: 

36a2 k T { l _  [1Fl(l;3. noa]]-a } 



478 B. Mrygor~ 

which leads to the equation 

1 _  _l/a[kT(poN)2 f l  _ [ ( 3 no~]-1})113 
kT = -~ po w + ,,o ~ ~ \ 1F1 1; if; 2 ~ ] J  (24) 

Since no >> 1, the second term on the r.h.s, of  (24) can be neglected in our 
considerations. Then, for all values 3kT < poN the probability distribution 
function (10) for the density fluctuations in a one-phase fluid system is not 
longer determined. Therefore, Eq. (24) can be interpreted as one which 
determines a curve bounding the region in which the one-phase fluid system 
cannot exist. In other words. Eq. (24) describes the coexistence curve. Since 
the probability distribution function (10) becomes uniform when the relation 
3kT = po~ is fulfilled, we can find the approximate numerical value of (8 z) 
for states on the coexistence curve without knowing the value of the parameter 
no. From Eq. (22) we obtain a value of �89 for (82) on the coexistence curve. 
Substituting this value into Eq. (9) and taking into account that Eq. (24) is 
fulfilled at the critical point, we obtain the law of corresponding states in 
the form 

PcVc/RT~ = 0.33 - a (25) 

The calculations of the whole isotherms involve complicated calculations of 
the radial distribution function g(r). ~5~ Let us stress the fact that the limits of 
the integrals in Eq. (22) leading to the defined value of (82) for all states 
including the critical state are direct consequences of Eq. (5) and the obvious 
condition (21). 

5. M O R E  PRECISE C A L C U L A T I O N S  

In previous sections we assumed density independence of co described by 
Eq. (4). The radial distribution function g(r) in formula (4) depends in fact 
not only on the distance r but also on the density and temperatureY 6~ There- 
fore, we should write it as g(r, p, T). In the case of density fluctuations it also 
depends on the parameter 8. That is why Eq. (24) can be treated as the first, 
very rough approximation of the coexistence curve. One can easily deduce 
that the values of pressure for a gas phase and a liquid phase are not the same 
on the coexistence curve given by Eq. (24) for the same temperature excluding 
the critical point. The lower the temperature, the worse is the approximation 
given by Eq. (24). This just results from the assumption that co does not 
depend on p. Since the analytical form of the function g(r, p, T) remains 
unknown, one can expand the quantity co in a Taylor series about its equi- 
librium value co0 

w(O) = Wo + ~ o AO + 2 \ ~p2]o AO2 + ' ' "  (26) 
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where Ap = p08. The last expansion gives the correction to the Eq. (8), which 
takes the form 

( [  ) } W = - - ~  po~ooN 1 + 1 +--COo -~p o +'2-~o ~ o <,8) +. . .  + W, 

and consequently the formula (9) for pressure in the whole system should be 
also corrected as follows: 

1 2 { [ 2 P ~ 1 7 6 1 7 6 1 7 6  ] ) 
P = k T p o - - ~ p o  OOo 1 + 1 +--a~o ~ o +2-~o \ap2]o (82) - akTpo 

(27) 

The last equation is expressed of course in the approximation to the terms 
with (82 ) only. 

Incidentally, the expansion (26) is equivalent to the virial expansion. 
In other words, one can say that the third virial coefficient is proportional 
to the first derivative and next coefficients to successive derivatives in (26). 

To calculate the mean square fluctuation more precisely, we should 
express Ap in terms of the parameter 8, taking into account the expansion (26) 
and carrying out the integration over 8 instead ofv  in Eq. (13). The local, iso- 
thermal change of pressure due to the density fluctuation with the parameter 8 
will take the form 

Ap = ( k T -  �89 8 - kpoZWo82 - -}t2o2(1 + 8) 2 Ar (28) 

where Am = aJ(p) -- o~(po). Substituting (28) into (13), using (26), and taking 
into account dv = (dv/dS) d8 and, from (11), av/a8 = -v0/(1 + 8) 2, we obtain 

{( 1 ):o, 88)=da_1 :o' a2 L(8) = no k T  - 5 t,o~,o (1 + g poO~o (1 + 8) - - - - ~  a'8 

6 Po = ~ Po l a - ~ ]  ~ d8 (29) 

Evaluating the integrals in Eq. (29), we can write the work L as a series 

L(8) = no ~ A,8 z+~ (30) 
l = l .  

where 

+1{_~/ 1 ) lp{+~ 1 [~<z)a)] A,=(-1)' \ l+ lkT-g  p~176176 -g  I!(l+1)\a:7o (31) 
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Applying the formulas (10), 
expression for the mean square fluctuation in the particle density: 

(22), (30), and (31), we obtain the following 

1 1)z+l(l@l kT - -~ pooJo ) 

1)~+l(l--~ k T -  lpoOJo ) 

( 3 2 ) =  ( ; ]  32 exp{ -n~ 1~ [(-- 

1 1 p~+ 1 [a(Z'co~ 
6 l! (l + 1) ~, ep(~']0 

• (f_+] exp{- z l [(- 

rewritten in the form 

no([lkT - ~poOJo(1 + t(0o, T))132 + R) 

Equation (30) can be 

L(~) = 

where 

(32) 

(33) 

1 P~ (0-~p) (34) 
/~(P0, T) = ~ ~~ 0 

For some particular values of T and p0 the first term on the r.h.s, of Eq. (33) 
vanishes. This means that in these cases the work L(3) is equal to noR. 
Analyzing Eqs. (30) and (31), one can deduce that the probability (10) 
becomes abnormally high for positive fluctuations [and can even be undeter- 
mined, since the exponent in (10) may be positive] and very small for negative 
values of 3, when the following equation is satisfied 

3kT = p0co0[1 + h(Po, T)] (35) 

This means that for the states described by Eq. (35) a fluid system has an 
abnormal tendency to create condensations which lead to the phase transi- 
tions. Thus, Eq. (35) can be interpreted as the coexistence curve. Equation (30) 
is determined for a representative subsystem. Since, however, the total 
number of atoms in a closed system is constant, it seems to be reasonable to 
assume that the probabilities for negative and positive fluctuations are the 
same and approximately equal to one with the normalizing constant equal to 
1/2 on the coexistence curve. The last assumption is equivalent to the assump- 
tion that the numbers and mean volumes of negative and positive fluctuations 
are the same. 

It has been shown in Section 4 that the general stability criterion intro- 
duced in the form (19) leads in first approximation to the vanishing of the 
probability index. This result is convergent with the stability criterion intro- 
duced by Smoluchowski. (~) On the other hand, Smoluchowski (5) pointed out 
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and Einstein (17) supported the idea that higher-order terms in the thermo- 
dynamic potential are indispensible in the description of  the critical state. 
This was also confirmed by Kocifiski el al. ~ in studies of the phenomenon 
of critical scattering of neutrons in ferromagnets. Incidentally, the well- 
known expansion in the Landau theory of phase transitions can be traced 
back to the original papers of Smoluchowski. Taking into consideration the 
higher-order terms in the thermodynamic potential leads to the nonuniform 
probability distribution function at the critical point. Although the coefficients 
(31) in series (30) do not result fi'om the expansion of the thermodynamic 
potential with respect to the thermodynamic variables, the general form of 
the probability distribution function given by (10) and (30) is analogous with 
one introduced by Smoluchowski. 

Equation (35), suggested as the equation of the coexistence curve, can be 
derived more formally. For this purpose we shall apply the general criterion 
of stability given in the form (19). We shall carry out our considerations in the 
approximation to the terms with 82 only. This means that only the first term in 
the series (30) will be taken into account. 

In this approximation the mean square fluctuation will be expressed by 
the general formula (22) but c~ will now take the form 

k T -  1 = ~po,oo - ~ ' p o 2 ( ~ o 4 % ) o  ( 3 6 )  

In the same approximation, from Eq. (28) we obtain the value 8c described 
in Section 4, 

3c = 6c(A (37) 

where 

A = po~Oo + 2,o 0 [-~p)o + 7 [8-~p2]o (38) 

Substituting Eqs. (23) and (37) into (19) and taking into account (36), we 
obtain an equation analogous to Eq. (24), 

kT=-~povoo + gPo \Sp]o n~ t ~ t  1 - L1FI,1; 2;2kT]J j ]  

(39) 

Neglecting the last term on the r.h.s, of  (39) because no >> 1, we obtain 
Eq. (35) with A(po, T) described by (34). 

For the critical point the density of the gas phase is equal to the density 
of the liquid phase. This leads to the demand for the same value of the 
parameter a(Po, T). It results from our analysis of the dependence of the 
internal virial on the density that this condition can be met only by A = 0, 
which corresponds to the maximal value of co o at the critical point. Thus, at 
the critical point 3kT = pow0 and we obtain almost the same value for the 
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critical ratio as that given by Eq. (25). The undetermined parameter a will 
be somewhat changed due to the correction to the equation of state given by 
the expansion (26). The parameter ;~(p0, T) determined by Eq. (34) is positive 
for the part of the coexistence curve on the gas-phase side and negative on 
the liquid-phase side. 

6. A P P R O X I M A T I O N S  

The assumption of  the homogeneous fluctuation model is the most 
crucial physical approximation made in our description of the phase transition 
in a fluid system. The density fluctuations are, in fact, inhomogeneous and 
would be described adequately in terms of the correlation function to which 
the spatial distribution of the particle density in fluctuation is related. Re- 
writing the whole theory in terms of the correlation function instead of the 
parameter ~ is, at least in principle, possible, but it involves real mathematical 
difficulties. The pair distribution function g(r) used in Eq. (4) is a measure of 
the probability of finding a pair of particles separated by a distance r; 
clearly, the product g(r) dar determines the probability of finding a particle in 
the volume element d3r around the point r when we already have a particle 
at the point r = 0. For a homogeneous system of N particles each particle 
chosen as a central one is equally likely to be at any point in the space avail- 
able to it, and the radial distribution function g(r) depends mainly on the 
form of the interaction potential. In other words, the function g(r) plays 
the role of the correlation between molecules over microscopic distances. The 
range of this function is of the same order as the range of the interaction 
potential. For  a homogeneous system the function g(r) can be determined by 
means of the proper integral equation. (15~ The determination of the function 
g(r) becomes much more complicated f'or an inhomogeneous system because 
in this case the function g(r) depends also on the macroscopic spatial distribu- 
tion of the particle density. In an inhomogeneous system all particles cannot 
be treated as equivalent to a central one since the microscopic correlation 
depends on the position of the particle chosen as central. On the other hand, 
the condensation can be regarded as a static phenomenon and should be 
well described in terms of the mean square fluctuation. It can be assumed that 
the mean square fluctuation calculated for a homogeneous fluctuation does 
not differ too much in comparison with one calculated for an inhomogeneous 
fluctuation. 

We have assumed that the fluctuations in density and temperature are 
statistically independent. It must be pointed out that this is also the approxi- 
mation. Such independence can be proved only to second-order terms in the 
expansion of the thermodynamic potential. In an exact approach the con- 
nection between fluctuations in temperature and density must be taken into 
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account. The last remark is connected with the theory of fluctuations. We 
have applied the well-known statements of the theory formulated for small 
fluctuations. As far as the theory is undoubtedly correct for small fluctuations, 
the extrapolation of the theory to the case of large fluctuations in the vicinity 
of the critical state may be questioned. On the other hand, the theory of 
fluctuations is not developed sufficiently in general and a better theory which 
could be applied for a description of  fluctuations in the critical state is not 
known. 

7. C O N C L U S I O N S  

Our aim has been to show that the density fluctuations must be taken into 
consideration in the derivation of the equation of state. Fluctuations in the 
particle density cannot be neglected, particularly in the vicinity of the phase 
transition since they give significant corrections to the equation of state. 
Without using any experimental parameter the fluctuation theory gives 
better agreement with experimental results than other theories. The value 
Pc Vc/RTc obtained from Eq. (9) is compared with other theoretical results 
and an average experimental value for several gases in Table I. 

It results from Eq. (9) or (27) and (22) that the increase of (52) with 
compression of a gas or expansion of a liquid flattens the isotherms in the 
critical region. 

The density fluctuations are responsible not only for the phenomenon of 
critical opalescence but also for the phase transition in a fluid system. The 
coexistence curve [Eq. (24), (35), or (39)] has been obtained analytically. 
Unphysical parts of the van der Waals isotherms in fact never appear in the 
theory. It is worthwhile to mention that the Eq. (9) or (27) has a physical 
sense only for a one-phase system. We do not discuss in this paper the horizon- 
tal part of an isotherm which describes the coexistence of a gas and a liquid. 

Table I 

Pc Vo/RTo 

Mean value for Ne, N2, Ar, CHa 
From Eq. (9) 
Lennard-Jones and Devonshire ~19) 
Van der Waals 
Cernushi and Eyring (2~ 
Peek and Hill ~21) 
Ofto (22) 

Mayer and Careri (2a) 

0.292 
0.33 
0.591 
0.375 
0.342 
0.719 
0.342 
0.676 
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The full  discussion o f  the two-phase  region can be found  in the paper  by 
van K a m p e n .  (2~ Our  theory  gives the phase  t rans i t ion  analyt ica l ly  for  a finite 
fluid system wi thou t  recourse  to the t h e r m o d y n a m i c  l imi t  and  explains  the 

mechanism of  condensa t ion .  
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